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Bisphenols form a large family of chemi­
cals that are used mainly to produce poly­
carbonates and epoxy resins. By far, the 
most widely used bisphenol (>  3  million 
tons/year) is bisphenol  A (BPA), which 
is used in the manufacture of items such 
as plastics, food can linings, dentistry seal­
ants, and thermal paper. BPA (Figure 1) is 
a model xenoestrogen. Despite possessing 
only modest estrogenic activity compared 
with 17β‑estradiol (E2), over the last decade 
BPA has been shown to produce a range of 
adverse effects in laboratory animals, with 
major concerns regarding reproductive targets 
(Richter et al. 2007). More recently, it has 
been hypothesized that early exposure to BPA 
could play a role in the onset of obesity and 
other metabolic syndromes (Rubin and Soto 
2009). In this regard, a large body of data 
about endocrine-disrupting chemicals (EDCs) 
underlines the importance of exposure dur­
ing early stages of development, which could 
result in reproductive defects in adult life 
(Newbold et al. 2009). Human exposure to 
BPA has been clearly demonstrated (Calafat 
et  al. 2008). However low-dose effects of 
BPA and the possible consequences of such 

exposure are controversial (Vandenberg et al. 
2009; vom Saal and Hughes 2005).

Halogenated derivatives of BPA, which 
feature bromine or chlorine substituents on 
the phenolic rings, are used as flame retar­
dants. However, compared with BPA, little 
information is available regarding the poten­
tial endocrine disruption by these compounds. 
All brominated BPA analogs originate from 
tetrabromobisphenol A (TBBPA), which is 
the most-produced brominated flame retar­
dant (>  150,000  tons produced annually) 
(de Wit et al. 2010). TBBPA (Figure 1) is used 
to produce fireproof epoxy resins used in the 
manufacture of computer motherboards and 
other electronics; and it has been found in the 
environment (de Wit et al. 2010), in wild­
life (Darnerud 2003), and in human samples 
(Cariou et al. 2008; Shi et al. 2009). TBBPA 
is debrominated in the environment into 
lower-brominated BPA analogs (monoBBPA, 
diBBPA, and triBBPA) (Arbeli et al. 2006). 
The closely related tetrachlorobisphenol A 
(TCBPA) (Figure 1) is also used as a flame 
retardant, but in much lower quantities than 
TBBPA (< 10 000 tons/year) (Chu et al. 2005), 
and its presence in environmental samples has 

been unequivocally demonstrated (Fukazawa 
et al. 2001). Given the low production level of 
TCBPA, its presence in the environment most 
likely originates from the spontaneous chlorina­
tion of BPA. Indeed, like many phenolic com­
pounds, BPA is readily chlorinated in aqueous 
media (Deborde et al. 2004).

The estrogenic activity of BPA exerted 
through binding to estrogen receptors (ERs) 
is likely involved in the onset of many of its 
adverse effects, and several studies in ani­
mal models have shown that such effects 
are observed after exposure to low doses 
(Vandenberg et al. 2009). Brominated BPA 
analogs are not as estrogenic as BPA, and the 
potency of brominated-BPAs as ER agonists 
decreases as the number of bromine atoms 
increases (Meerts et al. 2001). Conversely, the 
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Background: The occurrence of halogenated analogs of the xenoestrogen bisphenol A (BPA) has 
been recently demonstrated both in environmental and human samples. These analogs include 
brominated [e.g., tetrabromobisphenol A (TBBPA)] and chlorinated [e.g., tetrachlorobisphenol A 
(TCBPA)] bisphenols, which are both flame retardants. Because of their structural homology with 
BPA, such chemicals are candidate endocrine disruptors. However, their possible target(s) within 
the nuclear hormone receptor superfamily has remained unknown.

Objectives: We investigated whether BPA and its halogenated analogs could be ligands of estrogen 
receptors (ERs) and peroxisome proliferator–activated receptors (PPARs) and act as endocrine-
disrupting chemicals. 

Methods: We studied the activity of compounds using reporter cell lines expressing ERs and 
PPARs. We measured the binding affinities to PPARγ by competitive binding assays with 
[3H]‑rosiglitazone and investigated the impact of TBBPA and TCBPA on adipocyte differentiation 
using NIH3T3-L1 cells. Finally, we determined the binding mode of halogenated BPAs to PPARγ 
by X‑ray crystallography.

Results: We observed that TBBPA and TCBPA are human, zebrafish, and Xenopus PPARγ ligands 
and determined the mechanism by which these chemicals bind to and activate PPARγ. We also 
found evidence that activation of ERα, ERβ, and PPARγ depends on the degree of halogenation in 
BPA analogs. We observed that the bulkier brominated BPA analogs, the greater their capability to 
activate PPARγ and the weaker their estrogenic potential.

Conclusions: Our results strongly suggest that polyhalogenated bisphenols could function as obeso
gens by acting as agonists to disrupt physiological functions regulated by human or animal PPARγ.
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estrogenic activity of chlorinated congeners 
could be similar to or higher than that of BPA 
(Mutou et al. 2006; Takemura et al. 2005). 
Similarly, both TBBPA and TCBPA interact 
with and disrupt thyroid hormone receptor 
signaling (Kitamura et al. 2002). Recently, 
Somm et al. (2009) showed that perinatal 
exposure to BPA altered early adipogenesis 
in the rat, which is mediated by peroxisome 
proliferator–activated receptor γ (PPARγ), a 
nuclear hormone receptor whose dysregulation 
is involved in the onset of diabetes and obesity 
(Swedenborg et al. 2009). This suggests that 
BPA and its derivatives may also interact with 
this receptor. In the present study, we exam­
ined the capacity of BPA and halogenated 
BPA derivatives to interact with and perturb 
signaling by ERα, ERβ, PPARα, PPARδ, and 
PPARγ. We provide the first experimental 
evidence that flame retardants TBBPA and 
TCBPA are ligands and partial agonists of 
human PPARγ and also activate the corre­
sponding zebrafish and Xenopus receptors. Our 
findings indicate that these compounds should 
certainly be evaluated as EDCs with possible 
deleterious effects on humans and wildlife.

Material and Methods
Chemicals. We purchased E2, perfluoro­
octanesulfonic acid (PFOS), perfluoro­
octanoic acid (PFOA), BPA, and TBBPA 
[2,2-bis(3,5-dibromo-4-hydroxyphenyl)pro­
pane] from Sigma-Aldrich (Saint-Quentin 
Fallavier, France); TCBPA [2,2-bis(3,5- 
dichloro-4-hydroxyphenyl)propane] from TCI 
Europe (Zwijndrecht, Belgium); and rosiglita­
zone from Interchim (Montluçon, France). 
Mono-2-ethylhexyl phthalate (MEHP) was 
a gift from M.C. Chagnon (AgroSup Dijon, 
Dijon, France). [3H]‑Rosiglitazone (2,000 
GBq/mmol) was purchased from PerkinElmer 
(Courtaboeuf, France). We obtained materi­
als for cell culture from Invitrogen (Cergy-
Pontoise, France) and luciferin from Promega 
(Charbonnieres, France). 3-MonobromoBPA, 
3,3´-dibromoBPA, and 3,3´,5-tribromoBPA 
were synthesized from BPA. Brominated-BPA 
analogs were individually isolated and purified 
using HPLC and a Gilson 202 fraction collec­
tor (Gilson France, Villiers-le-bel, France) as 
described previously (Zalko et al. 2006). We 
evaluated the purity of all brominated ana­
logs by ultraviolet HPLC, electrospray ioniza­
tion mass spectrometry, and nuclear magnetic 
resonance (> 99.8%).

Transient transfection experiments. We 
monitored human (h), zebrafish, and Xenopus 
(x) PPARγ activity on (GAL4RE)5-βglobin-
luciferase and (PPRE)3‑TK-luciferase reporter 
constructs. PSG5-GAL4-hPPARγ-puro, pSG5-
GAL4-puro, (GAL4RE)5-β-glob-luciferase, 
(PPRE)3-TK-luciferase were tested previously 
(le Maire et al. 2009). PSG5-xPPARγ was a 
gift from W. Wahli (University of Lausanne, 
Lausanne, Switzerland). Zebrafish PPARγ 
ligand-binding domain (LBD) was synthesized 
by Eurofins MWG Operon (Les Ulis, France) 
and cloned between BamHI and XhoI restric­
tion sites in pSG5-GAL4-puro. Transient 
transfection and luciferase assays were per­
formed as previously described (le Maire et al. 
2009).

Reporter cell lines and stable gene expression 
assay. Generation of HGELN, HGELN‑ERα, 
HGELN-ERβ ,  HGELN-GAL-PPARα , 
HGELN-GAL-PPARβ, and HGELN-GAL-
PPARγ reporter cell lines was performed as pre­
viously described (Escande et al. 2006; le Maire 
et al. 2009). Briefly, reporter cells were seeded 
at a density of 20,000 cells/well in 96‑well 
white opaque tissue culture plates and main­
tained in phenol-red–free Dulbecco’s modified 
Eagle’s medium (DMEM) supplemented 
with 5% dextran-coated, charcoal-treated fetal 
calf serum. Twenty-four hours later, culture 
medium was replaced with DMEM contain­
ing tested compounds. We performed assays 
in the absence of serum to avoid ligand capture 
by serum proteins. Sixteen hours after expo­
sure, we replaced media with media containing 
0.3 mM luciferin. Luminescence was measured 
in intact living cells for 2 sec in a Microbeta 
Wallac luminometer (PerkinElmer). 

NIH3T3-L1 differentiation. Two-day post­
confluent 3T3L1 preadipocytes (a gift from 
L. Fajas; Institut de Génétique Moléculaire, 
Montpellier, France) were induced to dif­
ferentiate by 2‑day treatment with a differ­
entiation mixture (10 μg/mL insulin, 1 μM 
dexamethasone, 0.5  mM isobutylmethyl­
xanthine) followed by 8‑day treatment with 
10 μg/mL insulin and PPARγ ligands. The 
medium was replaced every 48 hr. After differ­
entiation, cells were stained with Oil Red O for 
morphological analyses, or RNA was extracted 
from the cells using the RNeasy RNA isolation 
kit (Qiagen, Courtaboeuf, France). For RNA 
extractions, four independent cultures were 
performed per condition. Reverse transcrip­
tion was performed with random hexamers on 

1 μg total RNA using SuperScript II reverse 
transcriptase (Invitrogen), and the reaction was 
diluted 100 times for amplification. Real-time 
polymerase chain reaction (PCR) quantifica­
tion was then performed using SYBR Green 
technology (LightCycler; Roche Diagnostics, 
Meylan, France). Results were normalized to 
two housekeeping genes (18S and 36B4) and 
quantified using qBase (Roche Diagnostics). 

PPARγ expression and purification. 
DNA encoding the LBD of human PPARγ 
(amino acids Glu196-Tyr477) was amplified 
by PCR and cloned into the expression vec­
tor pET15b. The plasmid PPARγ (Glu196-
Tyr477)-pET15b was transformed into 
Escherichia coli BL21(DE3) cells (Invitrogen). 
The PPARγ LBD was expressed and purified 
as previously described for retinoid X receptor 
(RXR)α LBD (Nahoum et al. 2007). Prior to 
crystallization trials, the purified PPARγ LBD 
was concentrated to 8.5 mg/mL in a buffer 
containing 20 mM Tris-HCl, pH 8.5, 250 mM 
NaCl, 5 mM dithiothreitol, and 1 mM EDTA.

Crystallization. Crystals were obtained by 
vapor diffusion in hanging drops at 293 K. For 
crystals of unliganded (apo) PPARγ, 1 µL pro­
tein solution was mixed with 1 µL well solu­
tion containing 1 M trisodium citrate, pH 7.5, 
100 mM Hepes, pH 7.5, and 3% 1,2‑propane­
diol. Crystals appeared after 1 day and grew to 
about 200 µm within a few days. TCBPA was 
soaked into a PPARγ apo-crystal by adding 
0.5 µL TCBPA at a concentration of 1 mM 
suspended in well solution directly to the crys­
tal drop. The crystals were soaked for 4 days. 
For co-crystals of PPARγ in complex with 
TBBPA, 1 µL protein solution was mixed with 
1 µL well solution containing 1 M trisodium 
citrate, 100  mM HEPES, pH  7.5, 3.5% 
1,2‑propanediol, and 0.2 mM TBBPA ligand, 
for a molar ratio of 1:2 of protein:ligand in the 
drop. Crystals appeared after 1 day and grew to 
about 200 µm within a few days. Crystals were 
transferred to a cryoprotectant (well solution 
containing 20% glycerol and the correspond­
ing ligand at a concentration of 1 mM) and 
frozen in liquid nitrogen. 

Crystallographic data collection, processing, 
and structure refinement. We collected diffrac­
tion data at the ID14-1 beamline at 2.55 Å 
and 2.70 Å resolution for TBBPA-PPARγ and 
TCBPA-PPARγ complexes, respectively, using 
an ADSC Quantum Q210 CCD detector at 
the European Synchrotron Radiation facility 
(ESRF, Grenoble, France). Diffraction data 
were processed using MOSFLM (Leslie 2006) 
and scaled with SCALA from the CCP4 pro­
gram suite (Collaborative Computational 
Project 1994). Structures were solved by 
using the previously reported structure 2ZVT 
(Waku et al. 2009) from which the ligand was 
omitted. Initial Fo-Fc difference maps showed 
significant signals for the ligand, which could 
be fitted accurately into the electron density. Figure 1. Chemical structures of BPA, TBBPA, and TCBPA.
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The structures were modeled with COOT 
(Emsley and Cowtan 2004) and refined with 
phenix.refine from the PHENIX program 
suite (Afonine et al. 2005).

Results
Halogenated BPA derivatives activate human 
ERα, ERβ, and PPARγ. We monitored the 
agonistic potential of BPA and halogenated 
derivatives using stably transfected HGELN-
ERα, -ERβ, -PPARα, ‑PPARδ, and ‑PPARγ 
cell lines, allowing for a comparison of the 
effect of compounds on human ER and PPAR 
subtypes in a similar cellular context. All com­
pounds were first tested on the HGELN paren­
tal cell line containing only the reporter gene. 
We observed some toxicity at ligand concen­
trations of ≥ 10 μM but no unspecific modula­
tion of luciferase expression (data not shown). 
We then characterized the activity of BPA, 
TCBPA, and TBBPA on HGELN-ER cell 
lines. As shown in Figure 2A and B, despite 
a reduced affinity relative to E2, BPA exerted 
an almost full agonistic activity toward both 
ERα and ERβ. In contrast, TBBPA had little 
effect on either ER, whereas TCBPA partially 

activated both receptor subtypes with a slight 
preference for ERα. Similar experiments car­
ried out using HGELN-PPAR cells demon­
strated that none of the compounds tested 
notably affected PPARα or PPARδ activity 
(data not shown). In contrast, both TBBPA 
and TCBPA were capable of partially activating 
PPARγ, despite being approximately 100‑fold 
less potent than the reference pharmaceutical 
compound rosiglitazone (Figure 2C). The par­
ent compound BPA failed to activate PPARγ. 
The occurrence of lower-brominated BPA 
analogs in the environment prompted us to 
measure their activity in HGELN‑ER cell lines 
and HGELN‑PPARγ cells (Figure 2D–F). 
Figure 2D shows that all brominated BPA con­
geners were partial ERα agonists with graded 
activities. BPA, monoBBPA, and diBBPA dis­
played the highest transactivation efficiency fol­
lowed by triBBPA, whereas TBBPA had almost 
no activity in the HGELN‑ERα cells. These 
compounds were also tested in the HGELN-
ERβ cell line, providing a similar partial activ­
ity and ranking order of estrogenic potency 
(Figure 2E). MonoBBPA and diBBPA, the 
brominated analogs characterized by the 

highest estrogenic potency but the lowest 
molecular weight, exhibited a slight ERα selec­
tivity. Interestingly, when assayed in HGELN-
PPARγ cells, the halogenated compounds 
ranked in the reverse order, with triBBPA 
and TBBPA showing the highest potency to 
induce luciferase gene expression, followed by 
diBBPA and monoBBPA (Figure 2F). Finally, 
we compared TBBPA and TCBPA with the 
well-known environmental PPARγ ligands 
MEHP (Feige et al. 2007), PFOS, and PFOA 
(Takacs and Abbott 2007) [see Supplemental 
Material, Figure 1 (http://dx.doi.org/10.1289/
ehp.1003328)]. As shown in Figure 2G, the 
halogenated BPAs triggered PPARγ activation 
at 10‑ to 100‑fold lower concentrations than 
the other candidate PPARγ disruptors.

Binding activity of TBBPA and TCBPA 
to human PPARγ receptor. To further charac­
terize the interaction between human PPARγ 
and halogenated BPA derivatives, we per­
formed whole-cell competitive binding assays 
using HGELN-PPARγ cells. TBBPA and 
TCBPA competitively inhibited the binding 
of [3H]-rosiglitazone to PPARγ (Figure 3). The 
half maximal inhibitory concentration (IC50) 
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Figure 2. Results of luciferase assays showing dose–response curves for BPA and its halogenated 
analogs (TBBPA and/or TCBPA; A–G), and lower brominated analogs (monoBBPA, diBBPA, and 
triBBPA; D–F ), as well as MEHP, PFOA, and PFOS (G), in HGELN‑ERα  (A,D), HGELN‑ERβ  (B,E), and 
HGELN‑PPARγ (C,F,G) cells. Results are expressed as a percentage of luciferase activity measured 
per well (mean ± SEM; n = 4) relative to the value obtained with 10 nM E2 (HGELN‑ERα and ERβ; 
A,B,D,E) and 100 nM rosiglitazone (Rosi; HGELN‑PPARγ ; C,F,G).
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values for rosiglitazone, TBBPA, and TCBPA 
were 12.0 nM, 0.7 μM, and 6.0 μM, respec­
tively. Together with transactivation assays 
(Figure 2C,F,G), these data demonstrate that 
TBBPA and TCBPA bind to human PPARγ 
and activate the receptor at concentrations in 
the micromolar range.

Halogenated BPAs promote adipocyte dif-
ferentiation through PPARγ. Having shown 
that halogenated BPAs are PPARγ ligands, we 
investigated the action of TBBPA and TCBPA 
on endogenous genes by studying their ability 
to induce adipogenesis, a well-characterized 
PPARγ-regulated function. As we expected, 
treatment of 3T3L1 preadipocytes with the full 
PPARγ agonist rosiglitazone strongly induced 
adipogenesis, as evidenced by Oil Red O stain­
ing, whereas the PPARγ antagonist CD5477 
(le Maire et al. 2009) did not induce adipo­
cyte differentiation (Figure 4A). TCBPA and 
TBBPA at 10 μM also induced adipogenesis, 
whereas co-treatment with CD5477 inhibited 
the adipogenic action of TBBPA, indicating 
that halogenated BPAs mediate adipogenesis 
via PPARγ. Adipocyte differentiation by 
TBBPA and TCBPA was further confirmed by 
examining the endogenous expression of two 
PPARγ target genes, namely ApoA2/FABP4 
(AP2) and PPARγ itself (Figure 4B). Whereas 
PPARγ was expressed at similar levels upon 
treatment with halogenated BPAs or rosigli­
tazone, AP2 was expressed to a much lesser 
extent after treatment with either TBBPA or 
TCBPA compared with rosiglitazone. This dif­
ferential expression level of the two genes could 
reflect partial agonism of halogenated BPAs.

TBBPA and TCBPA are activators 
of zebrafish and Xenopus PPARγ. Because 
the amino acid sequence of PPARγ differs 
between mammals and other species, we car­
ried out transient transactivation assays to 
examine the ability of TBBPA and TCBPA to 
act as agonists of zebrafish and Xenopus PPARγ 
(Figure 5). These two animal species are often 
used as in vivo models to evaluate the impact of 
environmental compounds on organisms (Fini 

et al. 2007; Legler et al. 2002). This experi­
ment confirmed that TBBPA, TCBPA, and 
MEHP are all activators of human PPARγ. 
We also found that TBBPA and TCBPA 
activated zebrafish PPARγ, whereas MEHP 
appeared to be a slightly weaker ligand, and 
rosiglitazone was completely inactive. In con­
trast, all compounds, including rosiglitazone, 
activated Xenopus PPARγ. Together, our data 
indicate that halogenated BPA can disrupt the 
activity of PPARγ from different species. 

Structural analysis of the TBBPA- and 
TCBPA-PPARγ complexes. Finally, we solved 
the crystal structures of TBBPA and TCBPA 
bound to the PPARγ LBD to reveal the mech­
anism by which these compounds, which 
are structurally unrelated to known PPARγ 
ligands, bind to and activate this receptor [see 
Supplemental Material, Table 1 (http://dx.doi.
org/10.1289/ehp.1003328)]. As exemplified 
by the PPARγ–TBBPA complex (Figure 6A), 
the structures reveal the canonical tertiary fold 
of agonist-bound nuclear hormone receptor 
LBDs (Bourguet et al. 2000). The TBBPA 
and TCBPA complex structures are indistin­
guishable, with a root mean square deviation 

(RMSD) value of 0.29 Å for superimposed 
alpha carbons (see Supplemental Material, 
Figure  2) and nearly identical to that of 
PPARγ in complex with the agonist rosiglita­
zone (Nolte et al. 1998), with an RMSD value 
of 0.62 Å (Figure 6B). Omission of Fo‑Fc dif­
ference maps for the TBBPA and TCBPA 
structures revealed clear density for the ligands 
that could be positioned unambiguously into 
the PPARγ ligand-binding pocket (LBP) (see 
Supplemental Material, Figure 3B). PPARγ 
displays a large LBP that extends from the 
C‑terminal helix H12 to the β-sheet S1/S2 so 
that halogenated BPA occupies a small portion 
of the LBP (Figure 6A). Whereas rosiglita­
zone occupies a region of the LBP spanning 
H11/H12 to the β‑sheet S1/S2, TBBPA and 
TCBPA occupy only the region between H3 
and the β‑sheet S1/S2, with cycle A nestled 
between H3 and the β‑sheet (Figure 6B,C). 
In contrast with rosiglitazone, a consequence 
of the smaller size of halogenated BPAs is 
that they do not interact directly with H12 
(Figure 6B,C). A close look at the LBP shows 
that the phenol groups of the BPA derivatives 
are involved in hydrogen bonds. The hydroxyl 

Figure 3. Competitive inhibition of [3H]-rosiglita‑
zone (Rosi) binding in HGELN‑PPARγ cells incu‑
bated with different concentrations (0.001–30 μM) 
of Rosi, TBBPA, and TCBPA in the presence of 
3 nM [3H]‑Rosi. Values are the mean ± SD from four 
separate experiments. 
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group from cycle A (Figure 6D) interacts 
with the main chain nitrogen atom of Ser342 
(β‑sheet S1/S2), whereas the second one (cycle 
B) is hydrogen-bonded to Ser289 in H3 and 
Tyr473 from H12 through a water-mediated 
hydrogen bond network (Figure 6E). TBBPA 
and TCBPA contain four halogen atoms 
that contribute to ligand binding through 
van der Waals interactions (Figure 6D,E). 
Additional interactions involving the ligand 
backbone were also observed (Figure 6F). 
Interestingly, comparison of human, mouse, 
and zebrafish PPARγ sequences reveals several 
residue differences, which could explain the 
differential ligand specificity of the various spe­
cies (see Supplemental Material, Figure 3A). In 
particular, the replacement of human PPARγ 
Gly284 and Cys285 by serine and tyrosine res­
idues in zebrafish PPARγ provides a rationale 
for the weak binding affinity of rosiglitazone 
for this receptor compared with that observed 
for the human homolog (see Supplemental 
Material, Figure 3B). In contrast, the differ­
ent binding mode of halogenated compounds 
allows both human PPARγ and zebrafish 
PPARγ to accommodate TBBPA and TCBPA 
(see Supplemental Material, Figure 3B).

Discussion
Mounting data indicating the presence of 
halogenated bisphenols in environmental and 
human samples clearly suggest that these com­
pounds should be considered an emerging class 
of contaminants whose cellular targets and 
effects require better understanding (Cariou 
et al. 2008; de Wit et al. 2010; Fernandez et al. 
2007; Guerra et al. 2010). Brominated BPA 
analogs result mainly from the extensive use of 
TBBPA as a flame retardant, whereas a grow­
ing body of evidence suggests that chlorinated 
BPA analogs arise from the abiotic chlorination 
of BPA residues (Fukazawa et al. 2001). In the 
present study, we investigated the possible role 
of BPA and halogenated BPA derivatives as 
environmental ligands for ERs and PPARs.

We used HeLa cells, which are charac­
terized by low intrinsic metabolic capabili­
ties, to examine ER and PPAR activities to 
minimize metabolic biotransformations of 
tested compounds, which potentially can 
lead to a misinterpretation of in vitro results. 
Toxicity of halogenated BPA derivatives 
toward HeLa cell lines was observed at con­
centrations > 10 µM, which is fully consis­
tent with previous reports showing that both 
TBBPA and TCBPA are more toxic than BPA 
(Nakagawa et al. 2007). For brominated ana­
logs, the ranking order of estrogenic potency 
in HELN-ERα and HELN-ERβ cell lines was 
monoBBPA > diBBPA > triBBPA, whereas 
TBBPA showed no estrogenic activity at all. In 
a similar study using T47D breast cancer cells, 
Meerts et al. (2001) reported similar findings. 
Interestingly, in HGELN-PPARγ cells, the 

ability of BPA analogs to activate PPARγ was 
reversed, with TBBPA = triBBPA > diBBPA 
>>> monoBBPA. The activity of TCBPA was 
similar to that of TBBPA.

Full agonists of PPARγ (e.g., rosiglitazone) 
have been reported to fully activate their cog­
nate receptor by directly interacting with and 
stabilizing helix H12, whereas compounds that 
do not directly contact H12 behave as weak 
or partial agonists by stabilizing other regions 
of the LBD, including H3 and the β-sheet 
S1/S2 (Bruning et al. 2007; Kallenberger et al. 
2003). Both the functional and structural 

studies reported here support this model of par­
tial PPARγ agonism by TBBPA and TCBPA. 
The rather weak affinity of halogenated BPAs 
for PPARγ compared with rosiglitazone can be 
explained by their smaller size and correspond­
ingly fewer direct atomic contacts with the pro­
tein. Notably, whereas rosiglitazone is engaged 
in five hydrogen bonds with the protein, only 
two hydrogen bonds are observed between 
TBBPA/TCBPA and PPARγ [see Supplemental 
Material, Figure 4 (http://dx.doi.org/10.1289/
ehp.1003328)]. The remaining contacts involve 
89, 79, and 75 van der Waals interactions for 

Figure 5. Effect of halogenated BPAs on activation of human, zebrafish, and Xenopus PPARγ. HeLa cells 
transiently transfected with (GALRE)5-βglobin-luciferase and pSG5-GAL4-PPARγ (human and zebrafish) 
or (PPRE)3-TK-luciferase and pSG5-PPARγ (Xenopus laevis) plasmids were incubated with 10 μM TBBPA, 
10 μM TCBPA, 10 μM MEHP, or 1 μM rosiglitazone (Rosi) to assess their agonist potential on PPARγ. 
Values are the mean ± SD of three separate experiments. 
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rosiglitazone, TBBPA, and TCBPA, respec­
tively (with a distance cutoff of 4.20 Å). The 
combination of significantly smaller size and the 
loss of stabilizing interactions between the halo­
gen atoms of the halogenated BPA derivatives 
and PPARγ most likely accounts for the absence 
of significant interaction between the parent 
compound BPA and this receptor. Conversely, 
whereas the large LBP of PPARγ (Nolte et al. 
1998) can readily accommodate the addition 
of bulky bromine or chlorine atoms, the much 
smaller LBP of the ERs cannot, thus providing 
an explanation for the differential pattern of 
interactions of halogenated BPAs with the two 
receptor types. It is noteworthy that some halo­
genated BPAs, including TCBPA and diBBPA, 
can interact with both ERs and PPARγ. This 
dual activity could increase the toxicity of these 
compounds compared with BPA or TBBPA, 
which are ER‑ and PPARγ-selective ligands, 
respectively. The comparison of the adverse 
effects induced by the two types of compounds 
through in vivo experiments should provide 
information on whether the dual ER/PPAR 
halogenated-BPA ligands display a higher EDC 
potency on reproductive and metabolic func­
tions than more selective congeners. Until 
now, few environmental compounds (includ­
ing MEHP, PFOS, PFOA, and organotins) 
have been found to interfere significantly with 
PPARγ signaling (Feige et al. 2007; Grün and 
Blumberg 2006; Grün et  al. 2006; Takacs 
and Abbott 2007). In this regard, we recently 
reported that organotins potently activate RXR/
PPARγ heterodimers essentially through bind­
ing to the RXR subunit (le Maire et al. 2009). 
Conversely, the functional and structural data 
presented here demonstrate that halogenated 
BPAs are capable of activating PPARγ via direct 
interactions characterized by binding affinities 
that are 10‑ to 100‑times higher than other 
proposed PPARγ disruptors.

The discovery of a novel chemical class of 
PPARγ activators strengthens the hypothesis 
that environmental ligands could be involved 
in the disruption of energy balance in humans 
and wildlife. As with other EDCs, perinatal 
exposure could play a critical role. According 
to Cariou et al. (2008), significant levels of 
TBBPA can be found in human cord blood 
(200 pg/g fresh weight) and maternal milk 
(0.1–37.4 ng/g lipid weight), demonstrating 
both prenatal and postnatal exposure in a large 
fraction of the population. Furthermore, as 
other RXR (the main active form of PPARγ 
is the RXR/PPARγ heterodimer) and PPARγ 
activators are also present in the environment, 
additive (acting only through PPARγ) and syn­
ergistic (acting through both RXR and PPARγ) 
effects could occur and further increase the 
risk of metabolic diseases. In this regard, the 
“cocktail effect” resulting from a concomitant 
exposure to organotins and halogenated-BPAs 
could be particularly deleterious.
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